Matlab Classification Method
The method in the system
- MultiNomial logistic Regressoin
- bad in high dimension
Factor = mnrfit(train_data, train_label);
scores = mnrval(Factor, test_data);
- bad in high dimension
Random Forest
- good classifier
- score is the probability output
Factor = TreeBagger(numberoftree, train_data, train_label);
[predict_label, scores] = predict(Factor, test_data);
Navie Bayes
Factor = NaiveBayes(train_data, train_label);
Scores = posterior(Factor, test_data);
[Scores, predict_label] = posterior(Factor, test_data);
predict_label = predict(Factor, test_data);
accuracy = length(find(predict_label == test_label))/length(test_label)*100;
- SVM
Factor = svmtrain(train_label, train_data, '-b 1');
[predict_label, accuracy, scores] = svmpredict(test_label, test_data, Factor, '-b 1');
- KNN
predict_label = knnclassify(test_data, train_data, train_label, num_neighbors);
- In matlab 2012
Factor = ClassificationKNN.fit(train_data, train_label, 'NumNeighbors', numofneighbours);
[predict_label, scores] = predict(Factor, test_data);
- Ensembles for boosting, Bagging or Random Subspace
- In matlab2012
Factor = fitensemble(train_data, train_label, 'AdaBoostM2', 100, 'tree');
Factor = fitensemble(train_data, train_label, 'AdaBoostM2', 100, 'tree', 'type', 'classification');
Factor = fitensemble(train_data, train_label, 'SubSpace', 50, 'KNN');
[predict_label, scores] = predict(Factor, test_data);
- In matlab2012
- discriminant analysis classifier
Factor = ClassificationDiscriminant(train_data, train_label);
Factor = ClassificationDiscriminant(train_data, train_label, 'discrimType', 'non-linear...');
[predict_label, scores] = predict(Factor, test_data);